Tolerating Generalized Mobile Adversaries in Secure Multiparty Computation
نویسندگان
چکیده
We study a distributed adversarial model of computation in which the faults are non-stationary and can move through the network (like viruses) as well as non-threshold (there is no specific bound on the number of corrupted players at any given time). We show how to construct multiparty protocols that are perfectly secure against such generalized mobile adversaries. The key element in our solution is devising non-threshold proactive verifiable secret sharing schemes that generalize the secret sharing schemes known in the literature.
منابع مشابه
Asynchronous Perfectly Secure Computation Tolerating Generalized Adversaries
We initiate the study of perfectly secure multiparty computation over asynchronous networks tolerating generalized adversaries. The classical results in information-theoretically secure asynchronous multiparty computation among n players state that less than n4 active adversaries can be tolerated in the perfect setting [4]. Strictly generalizing these results to the non-threshold setting, we sh...
متن کاملTwo-Round Multiparty Secure Computation from Minimal Assumptions
We provide new two-round multiparty secure computation (MPC) protocols assuming the minimal assumption that two-round oblivious transfer (OT) exists. If the assumed two-round OT protocol is secure against semi-honest adversaries (in the plain model) then so is our tworound MPC protocol. Similarly, if the assumed two-round OT protocol is secure against malicious adversaries (in the common random...
متن کاملAsynchronous Secure Communication Tolerating Mixed Adversaries
We study the problem of secure communication tolerating generalized mixed adversaries across an underlying completely asynchronous incomplete network. We explore the interplay between the minimal network connectivity required and the degree of security attainable, and completely characterize the network requirements for attaining perfect and unconditional (with negligible error) security. We al...
متن کاملOn the Oblivious Transfer Capacity of Generalized Erasure Channels against Malicious Adversaries
Noisy channels are a powerful resource for cryptography as they can be used to obtain information-theoretically secure key agreement, commitment and oblivious transfer protocols, among others. Oblivious transfer (OT) is a fundamental primitive since it is complete for secure multiparty computation, and the OT capacity characterizes how efficiently a channel can be used for obtaining string obli...
متن کاملSecure Computation against Adaptive Auxiliary Information
We study the problem of secure two-party and multiparty computation (MPC) in a setting where a cheating polynomial-time adversary can corrupt an arbitrary subset of parties and, in addition, learn arbitrary auxiliary information on the entire states of all honest parties (including their inputs and random coins), in an adaptive manner, throughout the protocol execution. We formalize a definitio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000